## Spin-triplet correlations in superconductorferromagnet multilayers

M. Božović<sup>1,2</sup>, Z. Pajović<sup>1</sup>, and Z. Radović<sup>1</sup>

<sup>1</sup>Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade, Serbia <sup>2</sup>Dept. of Economics and Business, Univ. Pompeu Fabra, Barcelona, Spain

**Abstract.** We study transport phenomena in clean superconductor-ferromagnet (S-F) multilayers for a general case of arbitrary relative orientation of in-plane magnetizations and interface transparencies. We solve the scattering problem based on the Bogoliubov-de Gennes equation, taking into account both spin-singlet and -triplet superconducting correlations. We focus on size and coherence effects that characterize ballistic transport in two geometries, FSF and SFFS. In FSF geometry we find a monotonic dependence of conductance spectra on the angle of misorientation of magnetizations  $\alpha$  as their alignment is changed from parallel to antiparallel. Moreover, the critical Josephson current in SFFS multilayers is also a monotonic function of  $\alpha$  when the junction is far enough from 0- $\pi$  transitions. In contrast to the diffusive case, no substantial impact of long-range spin-triplet superconducting correlations neither on conductance nor on the Josephson current has been found in the clean limit.

## **REFERENCES**

- 1. Božović M., and Radović Z., submitted to New J. Phys. (2007).
- 2. Pajović Z., Božović M., Radović Z., Cayssol J., and Buzdin A., Phys. Rev. B 74, 184509 (2006).
- 3. Bergeret F. S., Volkov A. F., and Efetov K. B., Rev. Mod. Phys. 77, 1321 (2005).
- 4. Buzdin A. I., Rev. Mod. Phys. 77, 935 (2005).