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Abstract. We have studied the discharge dynamics of fusimotor neurons by applying the Wavelet
transform technique (WT) and Detrended Fluctuation Analysis (DFA). Here we adopt that the
neuronal discharge dynamics is manifested by random thime series of interspike intervals (ISI). We
found two different power-low type behaviors along interspike time intervals time scale, which are
separated by the pertinent crossover region. Our results reveal that different types of muscle motor
activity can be characterized by different critical exponents. Thease exponents are the characteristics
of neuronal noise.

INTRODUCTION

Noisy data, which emerge from systems with spatial and temporal randomness, such
as various biological and physiological phenomena, have been successfully investigated
using methods established within modern statistical physics [1]. This is how the scale-
invariant properties of a number of biological systems have been established, while
the use of modern methods derived from statistical physics has led to elucidation of
principles of organization in seemingly irregular biological data sequences [2].

In this spirit, we have performed an extensive statistical analysis of the fusimotor
neuron activities. We have used the wavelet transform (WT) analysis [3] and the modifi-
cation of random walk analysis, called the detrended fluctuation analysis (DFA) [4], for
the time series of fusimotor neuronal discharges. Fusimotor neurons belong to a complex
neural system of skeletal muscles [5, 6]. They take part in the shaping and transmitting
of proprioceptive information (about the temporary position and movement of relevant
extremity). Like other neurons, fusimotor neurons generate action potentials, brief and
uniform pulses of electrical activity (henceforth we will refer to them, in standard par-
lance, as spikes; see Fig. 1a), communicating thereby with muscle spindles, sensory
objects within muscles. There is a dominant belief that the time series comprised of the
consecutive appearance of spikes (see Fig. 1a), or, equivalently, subsequent interspike
intervals - ISI (see Fig. 1b), should be the key object in unveiling the true role of fusimo-
tor activity. For this reason, in this paper we investigate, using the above mentioned
statistical methods, the time series of fusimotor discharge behavior. We have analyzed
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FIGURE 1. (a) The recorded electrical activity of the cat fusimotor neuron. This activity results in
appearance of random series of spikes (action potentials), separated by the random time intervals, which
are called the interspike intervals (ISI). (b) A sequence of 200 ISIs (durations) I(k) depicted versus the
ISIs consecutive enumeration number k (to obtain the definitive results we used representative sequence
of the order 104).

spontaneous [7, 8] and stimulated (by mechanical and electrical activation of relevant
muscle) [9] activity, recorded from fusimotor neurons of decerebrated cats (felis domes-
ticus). Having in mind the specific role of fusimotor neurons within the neuromuscular
system, we are particularly interested whether our methods can discern these different
types of muscle motor activity.

WAVELET TRANSFORM METHOD AND RESULTS

WT is useful in analyzing nonstationary or inhomogeneous signals, giving both the
frequency and coordinate (time, or space) characteristics of the signal under study
[4], see Fig. 2. We have applied the DOG (Derivatives of Gaussian) wavelets [10] to
investigate various sets of ISI data.

To reach quantitative conclusions (which can be compared with the DFA results),
we have to calculate corresponding scalegrams (wavelet power spectra) EW (a). The
scalegram EW (a) can be related to the corresponding Fourier power spectrum EF(w),
so that if the two spectra, EW (a) and EF(w), exhibit power law behaviors, then they
should be described by the same exponent β [4].

Presented scalegrams in Fig. 3 have been calculated with the second order DOG
wavelet. One can see two regions of different power-law behavior (straight lines in log-
log scale), separated by the crossover point. In the region below the crossover point,
critical exponent is β = 0 for the scalegram obtained for spontaneous fusimotor activity,
while for stimulated activity we can see changes in the character of ISI series at small
scales and critical exponent reaches value β = 0.5. Namely, wavelet power spectra show
appearance of long-range correlations within ISI series when external stimuli are applied
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FIGURE 2. Pattern of wavelet transform coefficients for fusimotor ISI series. Transform is performed
using derivatives of Gaussian (DOG) of second order.

FIGURE 3. Typical example of the scalegrams, EW (l), of the second order of applied wavelet function,
in the case of the spontaneously active fusimotor neuron (small squares), and of the externally stimulated
fusimotor cell (small circles). Straight lines represent correlations of the power-law type, while the
slope of these lines corresponds to power spectrum critical exponent β . The appearance of long-range
temporal correlations of the power-law type (in the presence of external stimulation) is demonstrated by
the differences of slopes in the areas below crossover regions. In the case of the spontaneous activity
wavelet power spectrum behaves in accord with the power-law with the exponent β ≈ 0, which implies
the white noise in the fusimotor temporal dynamics. In the case of the stimulated β activity acquires value
close to 0.5.

to appropriate muscle, compared to the case of a non-stimulated fusimotor activity, when
no correlations appear (that is, when β = 0, which is characteristics of white noise). For
large scale (in the region above the crossover point) critical exponent β is larger, and it
acquires values characteristic for 1/ f noise, for both cases studied. Moreover, obtained
values of β , bigger than one, indicate possible non-stationarity of ISI series in areas of
large segment sizes [2].

DFA METHOD AND RESULTS

DFA method relies on the random walk theory for calculation of the so-called detrended
fluctuation function F(l) [3]. DFA is a technique that has been widely used for detection
of long-range correlations, when the fluctuation function behaves as F(l) ∼ lα . In
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FIGURE 4. Typical example of DFA functions, F(l), in the case of the spontaneously active fusimotor
neuron (small squares), and of the externaly stimulated fusimotor cell (small circles). Straigth lines
represent correlations of the power-law type, while the slope of these lines corresponds to DFA critical
exponent α . DFA functions are presented in the form F(l)2/l versus l, in order to compare the results
with wavelet transform analysis. Slopes of DFA functions in the area below crossover region behave in an
identical way as those obtained by the WT analysis. In the case of the spontaneous activity DFA exponent
is α ≈ 0, while in the case of the stimulated activity α is bigger than 0.5.

the case of short-range data correlations (or no correlations at all) it turns out that
the analyzed time series displays properties of a standard random walk (white noise),
and F(l) behaves as l1/2 [2]. On the other hand, for data with power-law long-range
correlations one may expect that α > 0.5. In addition, the exponent α , associated with
the detrended fluctuation function F(l), can be related to the power spectrum exponent
through the scaling relation α = (β +1)/2 [11].

In Fig.4 we present the results obtained by the use of DFA technique on time series of
fusimotor discharges. It is important to notice here that the white-noise-like behavior of
the spontaneously active cells is equivalent to the result previously found by the WT
analysis. The application of DFA technique on externally stimulated fusimotor data
reveals that the response of fusimotor neurons to external electrical and mechanical
stimulation is marked by the onset of temporal correlations as it is shown above.

DISCUSSION AND CONCLUSIONS

In this paper we have studied the discharge dynamics of fusimotor neurons by applying
the wavelet transform (WT) method and the detrended fluctuation analysis (DFA). We
demonstrated that the application of WT and DFA methods reveals power-law type
behavior across a reasonable large segment of scale. The obtained results also suggest
that complex neuronal dynamics (at least in the case under study) may change in the
presence of external stimulation and thus differentiate between the two types of muscle
motor activity. These results confirm previously obtained findings, in the case of sensory
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neurons from spinal cord (the so-called DHN cells, see [12]). Both approaches (WT and
DFA) confirmed the existence of the white noise in the fusimotor activity in the cases
of spontaneous activity, and the existence of correlated noise in the cases of stimulated
activity of relevant muscles, in the small scale regions.
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