Permutation Representations With Application To Quasicrystals And Carbon Nanotubes

Nicolae Cotfas

Faculty of Physics, University of Bucharest, Romania, ncotfas@yahoo.com

Let $\{g:\mathbb{R}^n\longrightarrow\mathbb{R}^n\mid g\in G\}$ be an orthogonal \mathbb{R} -irreducible representation of a finite group G, and let $\mathscr{C}=\{e_1,...,e_k,-e_1,...,-e_k\}$, where $e_i=(e_{i1},e_{i2},...,e_{in})$, be a finite union of orbits of G symmetric with respect to the origin. For each $g\in G$, there exist $s_1^g,\ s_2^g,...,s_k^g\in\{-1;\ 1\}$ and a permutation of the set $\{1,2,...,k\}$ denoted also by g such that $ge_j=s_{g(j)}^ge_{g(j)}$ for any $j\in\{1,2,...,k\}$. The formula $g\varepsilon_j=s_{g(j)}^g\varepsilon_{g(j)}$, where $\{\varepsilon_1,\varepsilon_2,...,\varepsilon_k\}$ is the canonical basis of \mathbb{R}^k , defines the *permutation representation* $g(x_1,x_2,...,x_k)=(s_1^gx_{g^{-1}(1)},s_2^gx_{g^{-1}(2)},...,s_k^gx_{g^{-1}(k)})$ of G in \mathbb{R}^k .

The subspace $\mathbf{E} = \{ (\langle u, e_1 \rangle, ..., \langle u, e_k \rangle) \mid u \in \mathbb{E}_n \}$ of \mathbb{R}^k is G-invariant, and in view of Schur's lemma the vectors $w_1 = \kappa^{-1}(e_{11}, ..., e_{k1}), ..., w_n = \kappa^{-1}(e_{1n}, ..., e_{kn})$ where $\kappa = \sqrt{(e_{11})^2 + (e_{21})^2 + ... + (e_{k1})^2}$, form an orthonormal basis of \mathbf{E} . The subduced representation of G in \mathbf{E} is equivalent with the representation of G in \mathbb{R}^n , and the isomorphism of representations $\mathscr{I} : \mathbb{R}^n \longrightarrow \mathbf{E}$, $\mathscr{I}(\alpha_1, \alpha_2, ..., \alpha_n) = \alpha_1 w_1 + ... + \alpha_n w_n$ allows us to identify the 'physical' space \mathbb{R}^n with the subspace \mathbf{E} of the *superspace* \mathbb{R}^k .

By embedding the space \mathbb{R}^n into the higher-dimensional space \mathbb{R}^k , the intial representation of G is replaced by an equivalent representation such that the group transformations are signed permutations. In the new representation the mathematical expressions of the G-invariant objects are simpler and more symmetric. The description of \mathbb{R}^n in terms of the superspace \mathbb{R}^k is similar to a description in terms of coherent states used in quantum mechanics. The construction presented above can be regarded as a version for finite groups of the coherent states defined by Perelomov in the case of Lie groups.

The use of a superspace offers some mathematical facilities, very important in the description of physical systems. For example, the orthogonal projection $\mathcal{Q} = \pi(\mathbb{Z}^k \cap \mathscr{S})$ on the physical space \mathbf{E} of the set of all the points of \mathbb{Z}^k lying inside the strip $\mathscr{S} = \mathbf{E} + [0;1]^k$ generated by shifting along \mathbf{E} the unit hypercube $[0;1]^k$ plays an important role in the description of the atomic structure of quasicrystals. The superspace \mathbb{R}^k offers some important facilities in the study of the self-similarities of \mathscr{Q} and in the description of phasons in quasicrystals.

The three-axis description of the honeycomb lattice is directly related to the use of a three-dimensional superspace. There is a natural bijection between the set of all the vertices of a honeycomb lattice and the set $\mathcal{L} = \{(x_1, x_2, x_3) \in \mathbb{Z}^3 \mid x_1 + x_2 + x_3 \in \{0;1\}\}$ which is an alternate mathematical model, and the starting point for a new mathematical approach to carbon nanotubes. More details are available online at http://fpcm5.fizica.unibuc.ro/~ncotfas/.