Search For New Quasi Low Dimensional Superconductors and Semiconductors

Cedomir Petrovic

Condensed Matter Physics, Brookhaven National Laboratory, Upton NY 11973

Abstract. Advanced crystal growth techniques have enabled synthesis of high quality quasi-low dimensional model materials suitable for experimental probes that are sensitive to electronic anisotropy. Recent discovery of quasi 2D Ce – based heavy fermion superconductors paved the way for deeper understanding of unconventional superconductivity in this class of materials [1]. The very rich spectrum of structurally tuned electronic states on the magnetic boundary shows some striking examples of the k – space inhomogeneity, for example the anisotropic destruction of the Fermi surface at the Quantum Critical Point [2]. In this talk I will review some new materials and examples of the model electronic systems in the field, such as interplay of superconductivity and magnetism in $Nd_{1-x}Ce_xCoIn_5$ and the rich physics in the recently discovered nearly magnetic or "heavy fermion" semiconductor FeSb₂ [3],[4].

REFERENCES

- 1. C. Petrovic et al., J. Phys.: Cond. Matter Lett.13, L337 (2001)
- 2. M. A. Tanatar et al., Science (in press) 2007
- 3. C. Petrovic et al., Phys. Rev. B 72 (4), 045103 (2005)
- 4. A. Perucchi et al., European Physical Journal B 54, 175 (2006)